Matrix representations of matroids of biased graphs correspond to gain functions

نویسندگان

  • Daryl Funk
  • Daniel Slilaty
چکیده

Let M be a frame matroid or a lifted-graphic matroid and let (G,B) be a biased graph representing M . Given a field F, a canonical F-representation of M particular to (G,B) is a matrix A arising from a gain function over the multiplicative or additive group of F that realizes (G,B). First, for a biased graph (G,B) that is properly unbalanced, loopless, and vertically 2-connected, we show that two canonical F-representations particular to (G,B) are projectively equivalent iff their associated gain functions are switching equivalent. Second, when M has sufficient connectivity, we show that every F-representation of M is projectively equivalent to a canonical F-representation; furthermore, when (G,B) is properly unbalanced, the canonical representation is particular to and unique with respect to (G,B).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biased graphs IV: Geometrical realizations

A gain graph is a graph whose oriented edges are labelled invertibly from a group G, the gain group. A gain graph determines a biased graph and therefore has three natural matroids (as shown in Parts I–II): the bias matroid G has connected circuits; the complete lift matroid L0 and its restriction to the edge set, the lift matroid L, have circuits not necessarily connected. We investigate repre...

متن کامل

A Generalisation of the Matroid Lift Construction

This paper introduces a general matroid-theoretic construction which includes, as special cases, elementary lifts of matroids and bias matroids of biased graphs. To perform the construction on a matroid A/ , it is necessary (but not sufficient) to have a submodular function inducing M . Elementary lifts are obtained when the submodular function chosen is the rank function of M . We define what ...

متن کامل

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

Representations of Bicircular Lift Matroids

Bicircular lift matroids are a class of matroids defined on the edge set of a graph. For a given graph G, the circuits of its bicircular lift matroid are the edge sets of those subgraphs of G that contain at least two cycles, and are minimal with respect to this property. The main result of this paper is a characterization of when two graphs give rise to the same bicircular lift matroid, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016